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ABSTRACT 

We consider the spatial Fourier transform   p,       for wave vector 

k   of the charge distribution of the electrons in a plasma with particle 

density   n,   electron and ion temperatures   T   and   T^, and Debye length 

D.    We assume the absence of a magnetic field, neglect collisions,  and 

assume   nD^ » 1 .    The statistical average of    pk is calculated as 

a function of   a = l/kD   assuming complete thermodynamic equilibrium; 

■2 
that component of    Pi.      •    which keeps in phase with the ion charge density 

fluctuations is also calculated. 

The frequency spectrum of the time-varying function   p        is ob- 

tained at thermal equilibrium and simplified,  assuming the ion mass to 

be much larger than the electron mass,   for general values of   a   and 

T/T- .    For small   a   the main component of the spectrum has the char- 

acteristic Doppler broadening shape corresponding to the electron's thermal 

velocity.    For large   a   we have a component with narrow width corres- 

ponding roughly to the ion-velocity Doppler spread and very narrow side 

bands at plus and minus the frequency of electrostatic plasma oscillations.* 

I.    INTRODUCTION 

In the last decade or two many calculations have been carried out 

on the time development of fluctuations of charge density in an ionized gas 

under a variety of conditions.    For a given volume   V   containing   N   electrons 

and   N/Z   positive ions of atomic charge   Z,   quantities   p,       and   p,.   have 

been introduced (mainly for mathematical convenience),  which are essentially 

4 This paper is to be published in the Physical Review.   Derivations in Appendix 
I and II were prepared by P.   Goldreich. 
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the spatial Fourier transforms for wave vector   k   of the electron and ion 

charge densities.    More specifically 

N 

p
ke(t)=-e y ■-*'■' 

j= i 

N/Z 
•ik.Ri 

e 

-  =   i 

6 

rpkt= %e + rPki        ' (1) 

where   r. (t)   and   R.{t)   are the positions,  as a function of time   t,  of the 

j     electron and ion,  respectively,  and   k   is a constant wave vector. 

The use of backscattering of a radar beam from the ionosphere at 

great heights or from the exosphere has been proposed recently by Gordon^ 

for measuring electron density and temperature at various heights.    Radar 

frequencies of 50 to 1000 Mc/s are used which are very large compared 

with the electron plasma frequency (of the order of 0. 1 to 10 Mc/s), 

oj    = (4Tme /m)*        , (2) 

where   n = N/V   is the particle density of the electrons alone,    e    is the 

charge (in C. G. S.  units) and   m   the mass of the electron.    Standard magne- 

toionic    theory replaces the electrons by a continuous medium,   whose re- 

fractive index is close to unity at these high frequencies and would not 

lead to reflection or attenuation,   if the density of the medium is assir led 

to be smooth and varying slowly.    The actual amplitude of radiation scattered 

for a scattering angle   6   from a volume   V   of ionized gas (dimensions of the 
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order of 1 km) is then simply the sum of the Thomson scattering amplitudes 

from each of the   N   electrons in the volume (Thomson scattering from the 

positive ions is negligible because of their large mass).    Since the electrons 

are highly nonrelativistic.we can neglect retardation effects and the scattering 

amplitude from each electron contains a phase factor like those appearing in 

Equation (1) with the wave number   k   given by   k - 4Trsin j9/X   where   X. 

is the wavelength of the electromagnetic radiation.    The total amplitude of 

backscatter as a function of time is thus proportional to the quantity    p^ e(t) , 

defined in Equation (1),  for a fixed value of  k.    For low enough intensity 

of the radar beam and for radar frequency large compared with   w      we can 

neglect altogether the effect of the electromagnetic radiation on the quantity 

Pke    ' 

Let   D   be the Debye length,  defined for the electrons alone;   then 

D = (<T/4TTne )I       , (3) 

where   n   is the electron particle density and   T   the electron temperature, 

and let   A be the dimensionless ratio 

A= nD3   oc (e2nl/3//CT)"3/2   oc D/<T/e2    . (4) 

We shall only consider cases throughout this paper where A » 1 ;   i. e. , 

where a sphere of radius equal to the Debye length contains very many 

electrons and where the Coulomb interaction energy between "nearby" 

-1/3 electrons (separations ~   n    '   )   is small compared with the thermal energy 

KT -    This inequality certainly holds for densities and temperatures encountered 

in the ionosphere and exosphere,  as well as for many laboratory experiments. 

We further assume throughout that the gas is ionized enough so that collisions 

with neutral gas atoms or molecules can be neglected.    This assumption is 
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not valid for the lower ionosphere but holds for heights of about 300 km and 

higher.    For a highly ionized gas with A» 1   the main collision process 

for electrons and ions is multiple Coulomb scattering through small angles, 

and the effective mean free path   Z    for appreciably deflections    is of the 

order of üA/logA» D.    We shall assume that A   is sufficiently large for 

the mean free path   I   to be large compared also with our effective scale 

length   k       and we shall neglect collisions altogether.    We shall calculate 

p,        in this paper only in the absence of any magnetic field.    For the 

ionospheric applications the neglect of the earth's magnetic field is not 

justified at the lower frequencies of about 50 Mc/s and is expected to give 

a moderately good approximation at radar frequencies of about 400 Mc/s or 

higher.    In many calculations in this paper we assume complete thermo- 

dynamic equilibrium,   but we shall also discuss some limited deviations 

from such equilibrium. 

In all our calculations the following dimensionless parameter   a 

will be of importance 

.^■.■....'AW-.'-.'/Y."1' • ci 
In the limit of   a -* 0   the collective effects of the Coulomb interactions, 

which become important only over distances as large as the Debye length 

D   or larger,  are negligible over distances as small as the scale length   k 

and the electrons are randomly distributed in space.    In this case we have 

completely incoherent scattering from each of the electrons,  at least at 

112 p ,     I    i  all the cross - 
X &-1 

terms average to zero;  and we simply obtain   Ne     for this quantity.    In 

the ionospheric applications for a radar frequency of 450 Mc/s,   for in-   , 

stance,    a < 1   at heights of 1000 or 2000 km and higher,  and this case of 
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a -► 0   has been treated in detail by Gordon.       We shall carry out calculations 

in this paper lor arbitrary values of   a   for which the spatial correlations 

between all the electrons and ions have to be taken into account. 

In Section II we evaluate the time average of the intensity of the 

electron density fluctuation,      Pwi»        '   ^or arbitrary values of the para- 

meter   a   and the atomic charge    Z   of the positive ions at complete thermo- 

dynamic   equilibrium.    We shall calculate these averages from first principles, 

although they could be obtained more easily using results from the Debye- 

Huckel theory.    Such a calculation does not give the time development of 

Pjft)   or its frequency Fourier transform,   but the intensity can be divided 

into two parts with different characteristic frequency spreads,   if the ion 

mass   M   is'very large compared with the electron mass   m .    The ions move 

very slowly compared with the electrons,   and if we consider the ions fixed, 

we can evaluate the average correlation of the electron density distribution 

with that of the ions.    Such a calculation will give that part of   p,      that varies 

very slowly with time (characteristic of ion thermal velocities).    The re- 

maining part of   p*       varies rapidly with time   (characteristic of electron 

thermal velocities). 

/I l2\ In Section III we derive formulas for ( Q.    (w)    \ where   Q,    (w)   is 

the frequency Fourier transform of   p,    (t)e'^     in the limit of   V »♦ 0 .    This 

quantity is relevant if a frequency spectrum is observed over a long but    • 

finite time period.    The calculations are carried out for complete thermo- 

dynamic equilibrium except that the electron and ion temperatures    T   and 

T.   need not be equal.    In Section IV the general results are simplified and 

approximations evaluated,   using the fact that the äon ma,88   M   is much 

larger than the electron mass   m .    In Section V a special kind of deviation 
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from equilibrium is discussed,   where we assume that an external agent 

suddenly alters the degree of ionization in a nonuniform manner at some 

time,   but the medium is allowed to relax to equilibrium after this time. 

II.    SOME TIME-AVERAGED INTENSITIES 

We consider a volume   V   containing   N   electrons and   N/Z   positive 

ions of atomic charge   Z   with   N   and   V   extremely large but with electron 

particle density   n = N/V   fixed and finite.    In this section we assume cornr 

plete thermodynamic equilibrium at temperature T and evaluate statistical 

averages of various quantities.    Here we need make no assumptions about 

the collision mean free path being large as we do in the remaining sections. 

We do have to assume,  however,   that the dimensionless parameter A defined 

in Equation (4) is large compared with unity;   in an expansion in inverse 

powers of A we shall calculate explicitly only the leading term and give only 

qualitative estimates of higher order corrections. 

Let   k   be any wave vector which satisfies periodic boundary con- 

ditions for the volume   V   and,  for any given spatial distribution of all the 

electrons and ions,  define complex quantities   p^    ,   pi •   and   pi .    according 

to Equation (1).    Except for the relation   p^ = p^*   ,   different values of   k 

represent independent modes.    We shall write 

'i6ke "l6ki "i£kt 
Pke " ^kee '        Pki " ^kie '        Pkt = Pke + Pki = ^kt6 

where each   y.   and   6   is real and positive.    We shall need the electrostatic 

potential   <|)(r)   and electric field   E(r)   arising from the given distribution of 

electrons and ions.    After carrying out a Fourier transformation of the 

Coulomb potential     -e/ 'r - r.     resulting from the j"1 electron (and of its 
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gradient) and summing over all electrons and ions,  we find 

«},(r)=y(8ff/Vk2),i     cos(k.r -  6    )     , 
-     L-* Kt  kt 

k 

2. E(r) =y k (8ir/Vk )iJLktsin(k.r - 6i J     , (7) 

k 

where the   k   summation is carried only over half of all the possible   k 

vectors (those with positive   z   component,   say). 

We now consider   N-l   of the electrons and all the ions as fixed, 

intrdduce an   N       electron and ask for the statistical ensemble average of 

cos (k»r - 6)   over all positions   r   of this extra electron,    k   and   6   being 

fixed.    This average, is 

\ 3 e<t,(r)//C T 
J d  r cos (k» r. - 6)e 

<cos(k.r - 6)> = p   -    e<t)(r)/<f      • (8) 
d  re 

where K. is Boltzmann's constant.    As   V -► oo   we could write,  no matter 

what the value of A , 

e<j,(r)//< T 
« HD + {8WVk2/( D^cos^.r - 6ktn   , (9) 

and rewrite this infinite product as an infinite series of terms with successive 

positive powers of   1//CT .    However,  this series will converge rapidly if, 

and only if,      e4>(£)//<CT « 1.    If A» 1   the Coulomb interaction between 

"neighboring" particles is weak compared with    /^T   and this inequality is 

satisfied for all values of   r   except those very close to one of the fixed 

charges.    In the integral in Equation (8) distances away from a fixed 

fharge that are small compared with both the scale length   k       and the 
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Debye length   D  are unimportant.    At a distance   k"   ,   the potential energy 

of an electron is of order   e k   and the use of an expansion in powers of 

1//CT   will give rapid convergence as long as   (Aa)     ^ e k//CT « 1 ,  as 

well as A » 1 .    We shall assume that this inequality also holds (it breaks 

down only for    a « A    « 1 ,  and for such very small values of  a   the 

Coulomb correlations are negligible and the problem trivial in any case). 

Using the expansion of Equation (9) in the integrands of Equation (8),  we 

keep only the zero order term (unity) in the denominator.    In the numer- 

ator the zero order term gives no contribution,  we keep only the terms of 

first order in   l/K.T ,  and since the cosine terms for different values of 

k   are orthogonal,  we obtain 

<cos(kpr - 6)> = (47Te/Vk2/CT)u    cos(6 - 6, J     , (10) 
— — kt Kt 

where the   [j.,      and   6, t   refer to   N-l   electrons and   N/Z   ions.    A 

similar calculation for   <cos (k-R - 5) >   ,  where   R   is the position of an 

additional positive ion,   simply gives    -Z   times the expression in Equation 

(10). 

The use of Equation (1) gives a double sum over indices   j, /   for 

a quantity like   y.,       - p£     p^       for all   N   electrons.    In this double sum 

we separate out the terms with   j = /    for which the phase factors cancel. 

When a statistical ensemble average is taken,  the various terms in the 

remaining double summations give identical results,  and replacing   N(N-l) 

by   N   and dropping the subscript   k,  we obtain 

<^> = Ne2/l + N^osQc.^ - rz)>l   , 

<^> = Ne /z + N^osCk^Rj - R/)l>>   , {11) 

<H2> = <^> + <n2> - 2N2e2 <cosk.(r. - R/)>      . 

-8- 
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1 

where   t     and   R:   are the positions of the j"1 electron and ion respectively. 

The cosine expectation values are the Fourier transforms of the 

two-particle correlation functions,  which would vanish for randomly dis- 

tributed electrons and ions,  and we evaluate them as follows.    We keep 

p.   for all particles except electrons   j   and   I   fixed,  keep   r .   fixed at 
t —j 

first,  and average over   r ^  .    This average can be obtained in analogy with 

the derivation of Equation (10) but in Equation (9) we have to add the term 

Q  - (Sire  /Vk^/CT)cosk.(r ■ - »|)J 

which represents the Coulomb interactions between the two electrons singled 

out.    We have 

<cosk.(r : - r/)>      = (4ire/Vk2/<: T) G-e + H^ cos (k,r ; - 6 H    , 
-J      -        £j t J t 

with   r .   fixed.    We average next over   r . ,   still keeping   p    fixed,  use 
J «It 

Equation (10),  and finally average overthe remaining particles as well. 

Using the same procedure on the other cosine terms we find 

<cosk.(r . - r .)> = Z'   <cosk»(R . - R ,)> = -Z*   <C08k«(r .  - R ,)> 
-   -J     -' -   —j     — / -   -J     — * 

= (a2/N)Ca2<^t>2 (Ne2)"1 - Q      , (12) 

where the dimensionless parameter   a   is defined in Equation (5);     <M-f> 

refers to   N-2   electrons,   but   N-2   may be replaced by   N ,   since we 

expect no cancellation of large terms. 
2 

Substituting Equation (12) into Equation (11) to eliminate   <\i-t> 

2 2 and   <|x. >   yields an explicit expression for   <\i   > ,  and substituting this 

expression back into Equation (12) gives explicit expressions for the 

cosine expectation values.    Using Equation (11) again,  we finally obtain 

the desired expressions: 
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<^> = Ne2(l + Za2)D + (Z + l)**!'1 

<^> = ZNe2(l + o2)D + (Z + no2!*1 

<ji2> = (Z + l)Ne2D + (Z+ l^T1      i 

2-rl N<cosk{r . - £,}> = -i*D + (Z -I- l)a4II 

(13) 

(14) 

Equation (14) merely represents a rederivation of the Fourier transform 

of the well-known Debye-Hückel two-particle correlation function for two 

electrons.    If we had taken over this expression (and similar ones) from 

the Debye-Hückel theory,  substitution into Equation (11) would have given 

the desired results without requiring any other formulas of the present 

section. 

For   a « 1   our results in Equation (13) reduce to those for ran- 

domly distributed particles,  aj they should.    For   a « 1   the total charge 
2 

density fluctuations   <|it >   are smaller than those for random distribution 

-2       2 2 by a factor   a     ock    .    The electron charge density fluctuations   <|Ji   > , 

however,   are reduced only by a factor   Z/(Z + 1)   even in the limit of 

a -♦ oo .    Pines and Böhm   have carried out calculations for   <|Xg>   for a 

model in which the positive charges are uniformly and continuously dis- 

tributed.    Their results can be obtained from our more general ones in 

Equation (13) by making the formal substitution   Z = 0 ,   in which case 

2 2 2 2 <fie> = <)JL   >   and   <\i. > = 0 .    The expression for   <jji   >   for   Z = 1  , 

the case of greatest interest for the ionospheric application,  has also been 

derived by different methods by Fejer4 and by Renau.       Kahn6   has derived 
2 

an expression for   <|x   >   for general values of   Z   and   o,  which agrees with 

ours in the two limiting cases   a « 1   and   a » 1, but appears to be in- 

1 
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correct* for general values of  a. 

We finally evaluate in a similar manner another statistical average 

which forms only part of  <|jr> .    We first consider the positions of the ions, 

and hence   p. = p..e     *   ,  as fixed and ask for the average of the component 

of the electron quantity   p     which is in phase with the constant   p. .    We 

first rewrite the expression in Equation (10) for the average over the 

N*-   electron (with   N-l electrons,  as well as the ions,  fixed),  using the 

definitions in Equation (6): 

<cos(k'r - 6)> = ^Tre/Vk^/C-DOi   cos (6 - 6J + \i. cos (6 - 6.0   .   e e i i 

We have N 

\i   cos (6    - 6:) = -e    \      cos {k»£. - 6.) 

j= 1 

and for the j     term in this sum we first average over the j     electron, 

keeping the remaining electrons as well as ions fixed,  and use the equation 

for    <cos(k»r - 6)> .    Next we average over the remaining   N-l   electrons, 

still keeping the ions fixed,  and add the identical   N   terms   j = 1   to   N . 

This gives 

<H   cos (6    - 6:) >     = - a   r<ui   cos (6^ - 6;)>     + u. re e        l     p- ^ re x  e        V   p.      ^{^ 

= -a2(l +a2)-1
Fii      . (15) 

where the subscript   p.    indicates that this quantity is kept fixed.    We 

finally square the expression in Equation (15),  average over the positions 

The fallacy in Kahn's derivation appears to lie in the use made of his 
E xaation (17):   In this equation,  two expressions for   <(ir >   occur,   one 
for   N   electrons and one for   N + 1 ,   which should be taken at constant 
density   N/V   (not at constant volume   V).    Since second differences 
occur   in. subsequent equations,  the use of a constant volume   V   is not 

t justified. 
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of all the ions as weU and use the explicit expression in.Equation (13) 

for   <u. >   to obtain the desired result 

ee i =6:|ieco8(6e -6i)>p\ = ZNe2a4(l+a2)"tl + (Z+l)tt2l'1   . 

0      =  ^^ - 0  . = Ne2(l+tt2)"1        . (16) ee 'e ei x ' 

If the ion mass   M   is large compared with the electron mass   m , 

the expressions in Equation (16) have the following physical significance. 

The ions move slowly,   so that   p:   varies slowly with time, and the fre- 

quency Fourier transform of  \i.    has a narrow spread as does the Fourier 

transform of the square of that part of   p     which remains in phase with   p 

The full Fourier transform of   |J.p(t)   (which we shall analyze in detail in 
i 

}t\    twhirh w*»  shall  analvT*»  in  Hptail   in 

the next section) thus contains one part,  with a narrow frequency spread, 

whose integrated intensity is given by   ®e ^   •    The remaining part,   repre- 

senting the electron density fluctuations which are not correlated with the 

ions, has a wide frequency spread characteristic of electron thermal velocity 

Doppler broadening and integrated intensity g^iven by   ®e e   •    For   a « 1 

the dominant part is   © and the integrated intensity of the narrow part 

2 2   4 is small;   Baa ^ Ne     and   8   .   ~ Z Ne  a    .    For   a» 1   the dominant part e e e i 

is   8        and 
e i 

eee^<f^Ne2a-2«©ei        . 

In deriving Equation (10) from Equation (8) for a particular wave 

mode   k   we carried only the leading term in an expansion in powers 

of   l//CT   and thereby omitted all terms which involve any other wave 

mode   q ^ k .    The approximation made thereby is equivalent to the so- 

called "random phase approximation, " which neglects correlations between 

different wave modes.    Some deviations from this approximation could also 

12- 
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be calculated with methods similar to those of the present section.    For 

instance,  with   p. ajid   p, .   fixed,  the average of 
ke «vl 

Vq't008^ - 6 ■t) qt      q' 

for   q ■*- q' = k   could bo evaluated.    Using such expressions and keeping 

terms of second power in   1//CT   in Equations (8) and (9),  corrections to 

Equations (10) and (13) could then be obtained.    For   a « 1   the leading 

correction to Equation 

the correction to   <u.   > 
e 

(10) is probably of relative order   e2k//CT *• (Ao)"    . 

of relative order   o//\   ,  where   a   and   A   are 

defined in Equations (4) and (5).    For   a » 1   the leading correction both 

to Equation (10) and to <[i   >   is probably of relative order   (AQ ) 

III.    THE FREQUENCY SPECTRUM 

We have so far evaluated only the root-mean square average of the 

quantity   p  (t) defined in Equation (1) and now wish to calculate its time 

dependence,   or rather its frequency Fourier transform.    In this section 

we neglect collisions entirely (mean free path much larger than both   k 

and   D)   and assume that the only forces acting are those of the electric 

1 

field   E(r) ,   given in Equation (7), ari^ingfrom the charge density fluctuations 

themselves.    We again assume that A » 1   and also that   nk      » 1 .    In 

this case the use of a Boltzmann equation for a Boltzmann distribution 

function   f(r , V,  t)   is in general justified.    Such an equation was used by 
7 

Bhatnagar,   Gross,  and^Krook    and the spatial and frequency Fourier trans- 

forms of the distribution function   f   evaluated.    We shall use a method 

similar.to theirs,   but we shall have to take account of the discrete nature 

of the electrons more explicitly since we wish to retain also terms in an 

expression for   p   (t)   v^hich are proportional only to   N ,   the number of 
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2 
electrons in the volume   V ,  rather than   N    . 

We consider a fixed value of the wave vector   k ,   take its direction 

as the   z   axis,   call the   z   component of velocity   v   and shall omit the sub- 

script   k   in   fU      ,   etc.    We define a quantity   a       (t)   by 
K e cv 

dvaev(t) = -e^       e-lkzJ     ,      Pe{t) = ^ d vcr«. v (t)     . (17) 

J v 

(v) 
where   2        denotes summation over all electrons whose velocity lies 

between v and v + dv . Our quantity o- (t) is essentially -e times 

the spatial Fourier transform for wave vector k of the Boltzmann dis- 

tribution function   f(r, v , t) .    The Boltzmann equation reads 

a(rev/at+ikvaev   = -(e2/m)/d3rEz(r.t) Caf(£. !> t)/avle-ikz   . 

where the right-hand side represents the contribution from those electrons 

whose velocity was below   v   previously    but passed into the velocity 

regions between   v   and   v + dv   because of the acceleration by the electric 

field   E     (minus those that have passed beyond   v + dv);   E     is given by z z 

Equation (7).    We assume A= nD   » 1 ,  nk"3 » 1 ,  and the absence of 

any large-scale macroscopic deviations from thermal equilibrium,   and 

replace   f   in the right-hand side of the Boltzmann equation by the equili- 

brium distribution function 

i 2 
f(r , v , t) - nFe(v) ;     Fe(v) = UKT/rmr')ie-mv /2KT   , (18) 

where   n = N/V   is the electron particle density.    This gives 

da-       /8t + ikvo-        = i(47re2n//CT)(v/k) p^F  (v)     , (19) 
e v e v t   g 
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where   p     is   rp,t   for our fixed value of   k .     This substitution is equivalent 

to the "random phase approximation, •' since we have neglected fluctuations 

in   f(r , v , t)   with wave vector   q  together with components for   E   in 

Equation (7) with wave vector   k - q . 

We define next the frequency Fourier transforms, or rather 

Laplace transforms of the time-rjependent quantities     <r.v{t)   and   Pe(t)     , 

oo oo 

^M^    dt%v(t)e-(iw + V)t    .       Qe(.)=r   dtp^e-^^, 

0 0 
(20) 

where   Y   is a real,  positive,  infinitesimally small constant.    In a radar 

experiment, where tÄe frequency spectrum of   '|pe(t)J      is obtained during 

a large but finite time interval   (ZV)'    ,  a quantity essentially like 

|Q (w)       is measured and we also have for the time average of   |p , 

oo oo 

<|pe(t)|2> ^ 2V |pe(t))2e"2Vtdt = [l)    I      |QeM|2da)   .        (21) 

•oo 

Using the identity 

oo 

I (T  v(t)>"(lW + ^ dt =   -  *r     (0) ♦ (U +V) '*     M 
- ev   . e-v ^e v 

we derive from Equation (19) the relation 

^TM = (w + kv- W)-1!!- ^ v(0) - (4iTe2n/^T)(v/k)Fe(v)Qt(w)l   . 

(22) 

where   <r*      ,  p.i  q*      and   Q^   are defined by equations analogous to t,v ttv t 

Equations (17) and (20) but with all the charges,  electrons, and   positive 
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ions of charge   Ze ,   included.    For the ions alone one obtains an equation 

similar to Equation (22) with   ne      replaced by   Zne^   and with a distri- 

bution function   F(v)   occurring,  which is defined as in Equation (18) 

but with the ion mass   M   replacing the electron mass   m .    In this ex- 

pression we also allow the ion temperature   T.   to differ from the electron 

temperature   T .    For the electron and ions combined we then find 

.2 qtvM = (co + kv-iY)-1C-i(rtv(0)-(47rne2/k/CT)(Fe + ZTTi-1Fi)QtMl 

(23) 
Summing Equation (23) over all velocity groups   v   and using the 

fact that   Qt = ^dv q      ,  we obtain an explicit expression for  Qt(cj)   in terms 
v ^v 

of the quantities   a.    (0)   at the initial time   t = 0 .    The terms involving 

F  (v)   and   F-(v)   are smoothly varying functions of   v ,  and we can replace 

the summation over   v   by an integration.    In the term involving   o-  (0) , 

however,  we must be careful to preserve the discreteness of the summation 

and of expressions like Equation (17) and write this term as a summation 

over individual electrons and ions.    This gives 

N N/Z 

Qt(w) = ieD+GeM+Gi(a))I]"1/\    (w +kv. - iy)"^        j-z   /     (w + kv. - iy)"^"^^ 

jPl j= 1 
(24) 

where oo 

-1 G (w) =     /     Hire  nv/k/<T)(w + kv - iyJ^FJvJdv     , 
6 

oo 

G.iu> (4TTZe2nv/k/CT.)(w + kv - Y)'1F.(v)dv    . 

(25) 

-oo 

ith and   z. ,   Z    denote the position of the jin electron or ion,   respectively,  at 

time   t = 0 (and   v.   is the corresponding velocity).    After summing 
J 

. 

16- 



■■HBMWBHHflBHHBMlNHHDi 

Equation (22) over velocity   v   and making use of Equation (25), we also 

find 
N 

1 + G: «—'       .^Mi G. 
Qe(cü) = ie 

N II. N/Z -ikz   1 

• I + Gi    v   > Mj , z    G-    V    e    j 
1 + Ge + Gj    l_^   w + kv.-iY 1+Ge+Gi    [^   cj + kvj-iV_ 

j= 1 j = 1 

(26) 

Equation (26) expresses   Qe(<*))   explicitly in terms of the positions 

and velocities of all the electrons and ions at the initial time   t = 0 .    If we 

were to put   Z = 0   and replace the summation in Equation (26) by an integral 

over   o-       (0) dv , we essentially would obtain Equation (44) of Bhatnagar 

7 
et al. , ajid we ehallretiirn to sudh am equation in Section V.    At the moment, 

however,  we want an expression for QeH2 under conditions of thermal 

equilibrium (except that   T-   may differ from   T) and therefore take the 

modulus squared of the right-hand side of Equation (26) and average over 

initial conditions.    In the double summation over particles   j   and   /   we 

separate out the terms with   j = /   and obtain 

•ikz,. 

w + kv. - iY 
J 

j = 1 

litii*. +N(N - 1)//Fe(v )Fe(vz)<e ^ ^ >dv dv. 
^kv^ + Y2 Jj J J     ^ 

(27) 

The quantity expressed as  <    > ^   .   ^     indicates an average over the 

positions of the two electrons with their velocities kept constant and is of 

the same order of magnitude as the expression in Equation (14).    With the 

density fixed,  the second term on the right-hand side of Equation (27) is 

then proportional to   N ,  just as the firsx term,   but as   Y "* 0   the second 

term tends to a constant limit whereas the first term is proportional to 

Y" Keeping only terms of order   Y~      (see Appendix I),   we can neglect 
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the second term in Equation (27) and evaluate the integral in the first 

term and obtain from Equation (26) 

(Y/^fNe2)<|Qe(W)|2>=   |l + Ge + Gil^k-Mjl + 0^ Fe (-wA) + Z [GJ
2
 F. (-w/k) I . 

(28) 

where   G   is defined in Equation (25) and   F   in Equation (18). 

IV.    RESULTS 

Equation (28) is the essential result in its most general form.    For 

Z = T/T. = 1    this result has also been obtained by Dougherty and Farley 

and,  for   a » 1 ,  by Fejer.      Using Equations (54) and (56) of P.   L.   Bhatnagar, 

E.-P.   Gross and M.   Krook,   the expressions for   G   in Equation (25) can be 

expressed in terms of tabulated functions (see Appendix II) ; 

2 
G.M    =   a' 1 - ^x^-iN/ü xe' «•»/«.   ,    u)   = (2k2/CT/m)i    .      (29) 

G.fa,)     =  (ZTa2/^)    1 -f(y) - i^Trye-y      .    y = w/w.)     .    a). = (2k2 A^ T./^ji . 

2   r      t2 

■x     /    e    dt    . (30) f(x) = 2xe 

Using tables of the integral in Equation (30) we have tabulated   f(x) .    These 

values are given in Table I.   For   x < 1   the Taylor series (convergent for 

all   x ) converges rapidly , 

f(x) = 2x2 {1   - (2/3)x2 + (4/15)x4 + . . .   - (2x2)n   [3-5"(2n + 1)1  ^ + . . .} 

(31) 

For   x » 1 we have the asymptotic expansion 
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, 

Table I.    f(x) 
2 r = 2xe-x    J 

o 

2 
e*   dt. 

!           X f(x) jj                    X Hx) i              x f(x) 

1       -05 .0050 1          ^^ 1.2568 3.10 1.06392 

1       ■ 10 .0199 |         1. 35 1.2696 1          3.20 1.05895 

1       ,15 .0443 |      i.4o 1.2782 i          3. 30 1.05461 

|       .20 . 0779 |         1.45 1.2831 3. 40 1.05075 

1       .25 . 1199 1         1.50 1.2848 3.50 1.04735 

!       • 30 .1696 1.55 1.2835 3. 60 1.04429 

\       .35 .2259 1.60 1.2797 3.70 1.04157 

1       •40 .2880 1.65 1.2741 1          3.80 1.03909 

• 45 . 3545 1.70 1.2668 i          3.90 1.03682 

.50 .4244 1.75 1.2580 4.00 1.03478 

.55 .4966 1.80 1.2483 4. 10 1.03293 

.60 .5697 1.85 1.2380 4.20 1.03119 

|       .65 .6428 1.90 1.2272 4. 30 1.02965 

.70 . 7147 1.95 1.2160 4.40 1.02815 

.75 .7845 2.00 1.2057 4.50 1.02679 

.80 .8514 2. 10 1. 1844 4.60 1.02554 

.85 .9145 2.20 1.1639 4. 70 1.02437 

.90 .9733 2. 30 1.1457 4.80 1.02328 

.95 1.0273 2.40 1. 1295 4.90 1.02229 

1.00 1.0762 2.50 1. 1154 5.00 1.02134 

1.05 1.1196 2.60 1. 1032 

1. 10 1.1577 2.70 1.09281 

1. 15 1.1902 2.80 1.08389 

1.20 1.2175 2.90 1.07622 

1.25 1.2396 3.00 1.06959 
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f(x) - 1% (Zx2)"1   Cl + 3/(2x2) + 15/(4 x4) + .. O   • (32) 

For intermediate values of  x ,   the function   f (x)   is plotted in Figure 1 , 

as is the function obtained from the first two terms on the right-hand side 

of Equation (32) (dashed curve).    The velocity distribution functions   F   in 

Equation (28) can be written explicitly as 

k "1F    = e "X / »S/TT CJ and 1 F . = e - .*? / VTTOJ. 

The constants   w     and   w-   represent Doppler spread frequencies 

characteristic of thermal velocities of the electrons and ions,   respectively. 

For most cases of practical interest  m « M   and   T^ % T   so that 

r] = u./m   = (mT./MT)* « 1     . (33) 

In this case a good approximation (except for some special cases discussed 

below) can be given for Equation (28),   in terms of a single-parameter 

family of functions   F   of one variable,  as follows.    The first term in 
2 

Equation (28) involves   FeOGe"x     and is of most interest for    x  oc 1 . 

Disregarding the narrow region    x   =   y ^ <'l   >  we have     y   »1   for 

this term and     G^ ^-Z T a /2T.y     can be neglected compared with unity 

and with   G   .    The second term in Equation (28) involves F^ oce'^     and 

is unimportant if    y   =   x   I)* jfelf"    .      In the important regions we thenhave 

« 1   and   Ge A* a  (1 + i^x) .    Neglecting also the term   i's/irx ,  we obtain 

finally 

's/fr 
^(M^-ai^-M-    rß(y)? 

fii-.^l* 
T (1 + a") 

i 

10 

(34) 

*This result has been stated previously by E.   E.   Salpeter. mm   In his 
Equation (1)   1/2ITP

2
9

2
   should read   l/Zir^Q1,   . 
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rQ(x) = e"X ^[l + a2 - a2f{x)]2 + TTQ4x2e"2x ?        , (35) 

where   a   is defined in Equation (5) and   x,  y in Equation (29).    Values 

for   rQ   are given in Table II for several values of   a . 

Each function   rQ(x)   is even in  x .    It is plotted for positive   x   in 

Figure 2 for   a = 0 ,  0.5 ,   1,   2,   3 and 4 .    For   a « 1   the function is 
2 

close to the Gaussian   F   (x) = e        .    This is,   of course,  the characteristic 
o 

Doppler spread spectrum for noninteracting electrons.    For o'» 1 ,  on the 

other hand,    F   (x)   has a very sharp maximum near   x = ±. x    ,    where   x0 

is the solution of the dispersion relation 

f(x ).l = a"2     . (36) 
o 

For   x   very near   x    ,    ra (x)   can then be approximated by the Lorentzian 

shape 

4(x   -   x   r   *   (WIT   .' ;     \ ra(x) % io2e"Xo 

for   a » 1  .  where we have used the approximate relation   f - 1 ^ j-T 

in evaluating coefficients.    If Equation (36) is solved* approximately by 

using the first two terms in the asymptotic expansion,   Equation (32),  we 

obtain 

x2^i(a2 + 3)     ,      W
2 = (xoaJe)

2-W
2 + 3A:Tk2/m     . (38) 

This expression for   w     is the well-known^ dispersion relation for longi- 
o 

tudinal (electrostatic) plasma oscillations.        The Lorentzian shape of 

♦Equation (36) also has a second solution with   x   ^ 1 .    This solution is of 
no interest since   F^ * o-^ « 1 . 

**The relevance of such plasma oscillations to the radar backscatter problem 
was first pointed out by Akhieze'r et al, ,'.    who used ;a model in which the 

^ Lons are replaced by a uniform charge distribution. 
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Table ii.  ry«) = - 
1 

e ' 
2 < 

11 + P2 [l - f( x)]}^^ e-2*2x2 

X a = .5 a=.707 a = 1 a = 2 1    x a = 3 X a = 4  | 

1  0.0 0.6400 0.4444 0.2500 0.0400 0.0 0.0100 0.0 0.0035 

0.2 0.6315 0.4441 0.2521 0.0403 0.2 0.0100 0,5 0.0034 

0.4 0.6041 0.4416 0.2585 0.0413 :  0.4 0.0101 1   l-0 0.0034 

0.6 0. 5532 0.4323 0.2687 0.0430 0.6 0.0102 1.5 0.0032 

0.8 0.4748 0.4076 0.2807 0.0459 0.8 0.0104 2.0 0.0029 

1  1.0 0. 3720 0. 3566 0.2877 0.0504 1.0 0.0107 
2.5 0.0026 

1. 1 0. 3159 0.3196 0.2847 0.0538 1.2 0.0110 2.7 0.0029 

1.2 0.2603 0.2762 0.2735 0.0581 1.4 0.0116 2.8 0.0033 

L i.i 0.2080 0.2292 0.2517 0.0638 !   1.6 0.0124 2.9 0.0046 

i l•4 0.1613 0. 1825 0.2190 0.0716 1.8 0.0140 3.0 0.0095 

i i-5 

: 1.6 

0. 1214 

0.0891 

0. 1396 

0. 1028 

0. 1786 

0. 1364 

0.0826 

0.0987 

2.0 

2.10 

0.0172 

0.0202 

3.02 

3.04 

0.0119 

0.0164 

1. 70 0.0637 0.0733 0.0983 0. 1226 2.20 0.0261 3.06 0.0254 

1.75 0.1384 2. 30 0.0384 3.08 0.0453 

|  1.80 0.0444 0.0508 0.0674 0.1567 2.35 0.0512 3.09 0.0712 

1.85 

1.90 

1. 95 

|  2.00 

0.0304 

0.0204 

0.0343 

0.0227 

0.0447 

0.0288 

0. 1759 

0.1917 

0.1963 

0. 1853 

2.40 

2.45 

2.50 

2.52 

0.0751 

0.1281 

0.2603 

0.3367 

3. 100 

3. 105 

3. 110 

3.115 

0. 1209 

0.1672 

0.2542 

0.4152 

2. 10 0.0134 0.0147 0.0182 0. 1197 2.54 0.3810 3. 120 0.8779 

2.20 

2. 30 

2.40 

2.50 

0.0086 

0.0054 

0.0034 

0.0020 

0.0094 

0.0059 

0.0036 

0.0022 

0.0113 

0.0069 

0.0042 

0.0024 

0.0591 

0.0279 

0.0134 

0.0066 

2.56 

2.58 

2.60 

2.65 

0. 3375 

0.2403 

0.1571 

0.0565 

3. 125 

3. 130 

3. 135 

3. 140 

1.8592 

1.8936 

0.9300 

0. 3969 

2.60 0.0012 0.0013 0.0014 0.0034 2.70 0.0244 3. 150 0.1393 

2.70 0.0007 0.0008 0.0008 0.0017 2.75 0.0121 3. 160 0.0661 

2.80 

2.90 

3.00 

0.0004 

0.0002 

0.0001 

0.0004 

0.0002 

0.0001 

0.0004 

0.0003 

0.0001 

0.0009 

0.0004 

0.0002 

2.80 

2.90 

3.00 

0.0065 

0.0023 

0.0009 

3. 180 

3.200 

3.250 

3. 300 

3.350 

3.400 

0.0231 

0.0110 

0.0030 

0.0012 

0.0005 

0.0003 
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Equation (37) is characteristic of the resonance spectrum for a long- 

lived oscillation.    The width of the spectrum,   the expression in the second 

1 3 parenthesis   in     Equation (37) comes from the so-called Landau      (or 

"drift") damping,  which is contributed by those few electrons in the tail 

of the Maxwell distribution whose velocity equals the (very large) phase 

velocity of the plasma oscillation.    As   o   increases,   the width decreases, 

and the maximum of   F   (x)   increases sharply,  even though the integrated 

intensity, 

CD 

TT-2     /       rQ(x)dx%a'2     . (39) 

-00 

decreases.    It should be remembered that,  for a practical problem, 

collisions also contribute a very small width to the spectrum,   which 

dominates the Landau damping for very large values of   a   and that small 

slow variations of the over-all electron density will vary   Up   and broaden 

the spectrum.    As the discussion in Section II shows,   the integrated in- 

tensity in Equation (39) should not depend on collisions or on the width. 

We have discussed so far only the first term,   involving   T   (x) , 

in Equation (34) which represents the part of the frequency spectrum that 

is important at large frequencies,  of the order of  u     or of  u    ,  and 

whose integrated intensity is given by  ®ee     in Equation (16).    We turn 

now to the second term,   involving   Fofy) ,   in Equation (34) which is im- 

portant only for small frequencies and whose integrated intensity is given 

by  ®   .      in Equation (16).    For   a «   1   we have  9^:    ^ Za"*       ©        «0 

but the width of the second term is smaller by a factor oi  r\ = W:/we « 1 
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than that of the first,   and the peak of the second term will dominate for small 

a)   as long as   Z a    »  TI .    For   a » 1    the integrated intensity    0    ■    of the 

second term dominates that of the first term.    For the case of greatest 

interest,     Z = Ti / T = 1 ,  we then have   ß = 1   as   a -* ob   and   F   (y) 

has the almost flat-topped shape plotted in Figure 2.    In this case we have 

almost complete charge neutrality;   the electron density mainly follows 

that of the ions which can change only slowly and leads to a narrow fre- 

quency width of order   CJ. .    The shape of   iMy)   differs from the Gaussian 

for noninteracting ions because electrostatic.potentials of order    KT 

are set up by the requirement that the electrons follow the charge density 

of the (slow) ions. 

If the ion temperature   T^   is lower than the electron temperature 

T ,  as well as   a » 1  ,  we have   ß =   V Z T/T.   >   1 ,   and the "ion com- 

ponent"   rfl(y)   also has a Lorentzian shape like Equation (37).    This 

sharp "resonance curve" represents the so-called positive-ion oscillations^'^ 

whose frequency is the same as that of a plasma oscillation for fictitious 

particles with the ion charge and mass but with the electron temperature. 

If the quantity   T^  ,   defined in Equation (33) ,   is negligibly small and   there 

are no collisions,   the width of the frequency spectrum for the positive-ion 

oscillation is given by   Fofy) ,  no matter how large   ß   is .    However,   if 
_ß2 

(T|T^/ZT) » e"p /2   ,   then the replacement in the derivation of Equation (34) 

of   G   Rj - a   (1 + iVrrx)   by   -a     is not justified,  and the actual width, 

although still small,   is larger than that given by   Fofy) . 

To summarize the results so far,  for the most important case of 

T. = T ,   Z = 1   and   m « M .    We have defined the dimensionless para- 

meter   a   in Equation (5) and have   ß=a(l+a)'^,   r\ =   co./w    =-w'm/M . 
1        C " 
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The frequency distribution is given by Equation (34) with   x   and   y   defined 

in Equation (29).    The integral over   dw   of the first term in Equation (34) 

7   -1 
is    ^(1 + a )      ;   that of the second term is 

•yTir Q
4

(1 + aW + Ea2")'1   . 

The sum of the two integrals is 

^(1 + Q
2

)(1 + 2 a2)"1 

which decreases only by a factor of two as   a   goes from zero to infinity. 

The function   F   (x)   is even in   x   and is plotted for positive   x   in 

Figure 2,  has Gaussian shape for   a = 0 ,   is almost flat-topped for   a = 1 , 

and has a maximum at a nonzero value of   x   for larger values of   a . 

For   a > 4 the function   F  (x)   has the Lorentzian shape of Equation (37) 

with a very sharp peak of height greater than unity,  and Equation (38) is 

1/8 a very good approximation.    For   a < (m/M) ,   the maximum of the 

first term in Equation (34) is larger than that of the second term.    This 

is again the case for large values of   d (a ^ 5   for   M/m ~ 10 ) ,  but it 

should be remembered that in a practical problem such as the ionospheric 

application,  there are other causes,   besides Landau damping    broadening 

the "resonance peak" ,  and the actual maximum will be lower than that 

given by   rQ(x) . 

V..    SOME  DEVIATIONS   FROM THERMAL EQUILIBRIUM 

We have discussed so far only cases in which complete thermo- 

dynamic equilibrium holds (except that the ion and electron temperatures 

T- and T may differ).    We now consider one very special kind of small 

■ 2 9- 



deviation from equilibrium.     We assume that equilibrium has been established, 

but that at some time    t = 0 ,   the electron and ion charge densities are sud- 

denly both altered in a nonhomogenous manner (although the charge is kept 

neutral) by sonne external agent.    This might be accomplished,   for instance, 

by the sudden passage of fast ionizing particles with a patchy spatial  distri- 

bution.    The newly created patchy electron charge distribution is assumed to 

be small compared with the uniform density   n ,   but its spatial Fourier trans- 

form   p.      (0) = - p. .   (0)   of Equation (1),   is assumed to be larger than   p 

for purely thermal density fluctuations.    We further assume the absence of 

collisions and  A » 1    in Equation (4) ,  will use the random phase approxi- 

mation and consider only one particular value of the wave vector   k (and drop 

the subscript k).*     We assume next that   (re     (0)   and   cr.     (0)   of Equation 

(17),  are smoothly varying functions of the velocity   v .    We ailso assume that 

after the initial time  t = 0 ,   there are no external forces or disturbances 

(except for the possibility of another sudden burst of ionization after the effects 

of the original disturbance have died down). 

If we assume that the disturbance at   t = 0   occurs instantaneously, 

then the frequency Fourier transform of   pe(t)  is again given by Equation 

(26), but we can replace the summations by integrations over the smoothly 

varying functions   v       (0)   and   tr.     (0) ,    We specialize further by assuming 

that   a-     (0)   is proportional to the Maxwell distribution function for ions 

at temperature   T = T-   and that   cr       (0)   is proportional to the Maxwell 
1 V c 

distribution for electrons at temperature   T5        where   6^1.    Carrying 

Because of the absence of collisions our case is quite different from those 
involving turbulence (with a short mean free path) where large eddies feed 
small ones and      P^e^)   also depends on     Pke^   with   q^ k;   see,   for 
instance,   Villars and Weisskopf^ and Silverman^". 
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out the integrations over   dv   we find 

1 + G: 
Qe^ = l + Ö  +G:    -^ 

a 

e       i 
le 

62x2     f(x5) 
x6\fTT b). Viry 

(40) 

where   a   is a constant.    Using the fact that   m « M   we can simplify this 

expression as we did in Section IV to obtain 

\0 (*)\Z ocr^)(x)w;2vZa4(l+ aVM^Iy)«: 
ß 

r^x) = e"x   +eX ^(x)/^2 rn(x) (41) 

(1)- As Equation (41) shows,  the function   T     (x)   decreases much less 
a       , 2 

rapidly for large   x   than the function   F  (x) ,   as   x       rather than as   e 

This slow fall-off is due to our special assumption of a sudden onset of the 

disturbance which contributes Fourier components of large frequency.    If 

the onset occupies a finite time duration   T ,   as it wou^d in practice,  our 

Equation (41) breaks down for   «*> T"     and the actual spectral intensity 

I 12 would be lower than in our approximation.    Note also that   |OeM       in 

Equation (41) is independent of   y'    ,  the length of time over which the fre- 

quency spectrum is accumulated   (as   y -* 0),   rather than being proportional 

to   y~    ,  as is the expression in Equation (34) for the case of thermodynamic 

equilibrium.    Since we assumed only the creation of a single external dis- 

turbance,  which dies down in a finite time period,  the time periods beyond 

that point do not contribute to Equation (41). 

For   a ü I ,   (and   6 ^ 1 ),  the peak values of   F*  '   do not differ very 

greatly from those of   F    .    For   a » 1   the second term in Equation (41) 

contains   F ,  (y) .    The dashed curve in Figure 2 depicts this function   F','(X) 
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which is seen to be similar to   Fifc)   except for its longer tail.    The first 

term   F        in Equation (41) ,  however,   behaves rather differently for 

a » 1    (even with   6 ~ 1) .    It has the Lorentzian shape of the expression 

in square brackets in Equation (37) but the very small multiplying factor 
2   -x (1) 

x e    0   is missing.    The integral of   F        over   x   thus increases with   a 

nz/z -2 roughly as   ea rather than decreasing as   a   ' .    Physically this means 

that our assumed sudden onset of the disturbance can excite a plasma 

oscillation no matter how much larger   u     is than   uÄ ,   but this oscillation op e 

persists for a length of time (the inverse of the Landau damping frequency 

width) which increases with   a   as   eQ        .    It should be noted again that, 

in practice,   collisions will put an upper limit to the persistence time of 

the plasma oscillations and that the excitation of the oscillations would be 

strongly depressed if the onset time   T   of the disturbance ia large compared 

with the oscillation period   w'    .    The assumptions in this section were 

chosen not so much because they are physically reasonable but because 

their consequences follow readily from previous work in this paper. 
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APPENDIX I.    Evaluation of  I(Y) = 

oo 

F(v) dv 

(w + kv)2 + yf- 
-00 

Setting   x = Cü + kv   we get 

CD 

F(^-)     dx m = 
x2 + Y2        k 

-00 

Now let   x = VtanG ,  then 

Aften integration we get 

I(Y) = — F f- —W constant terms and terms in   Y ,   V   . 
Vk       N    k7 

Note that for any sufficiently well-behaved, function    F(v) ,  —^- (-a)/k) 
Vk 

is the only term in   I(Y)   which diverges as   Y -♦ 0 . 

TTF 
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APPENDIX 11.    Proof of Equation (29) 

oo 

G>) =      / A kTv     Fe(v>dv 
e /       cj + kv-iY        e 

-oo 

(1) 

Setting 

m w 
k     A^Z/^T       wth 

we get 

oo oo 

ue •u   du 
e      * y?       /        x+u-iY      N/TT 

u e •u du 

u - 9 
-oo -oo 

where   0 = iY - x .    Since the integrand is analytic except at   u = 9   we can 

change the path of integration to the contour   c   shown below. 

* Im 

:Q •1 
c 

1 r 
Re 
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Hence   G (u)   is resolved into a contribution from the small semi-circle 

plus the principal value of the integral along   c . 

To calculate the contribution   (I,)   to   G (OJ)   from the semi-circle 

integration,  we set   u = 9 + r e ^ .    Then 

2TT 2 
r- f \M      -O + re1*) 

iZ    l      r - 0 
IT 

2TT 

-e2   f -e2 
= i e /     9d(j) = 9 IT 1 e 

The principal value contribution   (I^)   yields 

oo 2 oo 

-jh-    \       u-ö    -   j     —r~ e dt 

-00 -00 

00 _ 00 j 

fl2      f     ^-2t9-t2 f       -{t + 9) 
= ee'U ^  dt+ e dt   ,.        (3) 

; t 

-00 -oo 

then 
oo oo 

jf h-.Zee-*
1    f    e-tZ   iiShmSl**      f      e-^dt.        (4) 

But 

a 
"0 -oo 

oo , 9 
.2 

e'1   sinh(2tG)dt       — ' 
= N^       e       dt     . 
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Proof by identity 

i)   Differentiating both sides with respect to   9   we get 

oo 

2   /       o'L    * os h (2 t9)dt = ^Tr: e9 
f 2 
/     e"*   co8h{2te)dt ■ sHr 

which yields 

dt = vir e e 

-oo 

e2 

ii)   Dividing both sides by   e       we get 

oo 

-(6 + t)2 ^       „ 
e dt = Vrr    , 

-oo 

which is a well-known result.    Furthermore the two integrals are both 

equal to   0   when   9 = 0.    Hence they are equal for all values of   9 .    Q. E. D. 

Substituting Equation (5) into Equation (4) yields 

6 

^.I2 = ^ -2^Be-Qj     e^dt     . 

Hence 

9 

92   T    t2 A
2 

G M = I   + I   = trO  - 29e /   e     dt + i 's/79e'0   J    . 
•9' 

^0 
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Now   as   Y - 0 ,    9 --x: 

2 -x2   ft2 r-       -x2n G   M = I,  + I, ^  Q   D  - 2xe  x     /    e1    dt - i 'S/TT xe        J 
6 It. 

-b 

2 - 2 

= a  Q  - f{x) - iN/^xe"x  D 

This is just Equation (29). 
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